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The fundamentals of radiation theory and the mechanism of evaporation of condensed bodies are presented.
The distribution functions of particles of a body by energies and by the intensity of their transition from one
energy level to another in the process of evaporation have been obtained based on the law of spectral-radia-
tion intensity of the body particles. The temperature dependence of the resulting vapor flow on the outer sur-
face of a massive condensed body and a thin layer in equilibrium and nonequilibrium states, which, in the
limit, transforms to the known Hertz–Knudsen formula, has been found.

Study of the kinetics of the process of evaporation of a liquid is a topical problem for a number of modern
industries. At present, the phenomenological approach is usually used in the theory of heat exchange for description of
evaporation and other processes of phase transformations [1]. However, a purely empirical study of phase transforma-
tions limits significantly the possibility of determining the general mechanisms of these processes. In a number of
works, the evaporation process has been investigated with the use of indirect information on the kinetics of condensa-
tion and heat and mass transfer in a vapor-gas medium external relative to the condensed body [2, 3]. Sometimes, it
is possible to obtain this information using the methods of the kinetic theory of gases [4]. However, with this ap-
proach, it is difficult to take into account the influence of the geometric, structural, and thermophysical parameters of
a condensed body on the evaporation kinetics, because this requires the introduction of simplifying assumptions. For
example, the Hertz–Knudsen formula for the resulting flow of a condensed one-component saturated vapor is derived
without regard for the difference between the velocity distributions of the vapor molecules moving toward the liquid
and from it and the condensation coefficient is considered to be independent of the pressure. At the same time, experi-
mental data show that this coefficient is a function of the state: it is close to unity at low pressures and decreases in
the region of higher pressure [1, 5, 6]. Relaxation phenomena in the case of nonstationary evaporation of a liquid have
been investigated in [7].

The attractive forces acting between the molecules of a condensed body contain them in the body. For the
molecules in a liquid or solid body to go to vapor after certain fluctuation processes, they must reach an energy level
sufficient to perform the work required for their breaking-away from the condensed body. However, the physical na-
ture of these fluctuation processes and the mechanism of breaking-away of molecules are still not clearly understood.

In [8–11], the radiation theory of heat conduction, which is based on the mechanism of energy transfer using
carriers emitted and absorbed by the particles of a substance, has been derived. Within the framework of this theory,
the following laws have been obtained: the fundamental law of spectral-radiation intensity of microparticles of a body,
which yields the Planck formula for the blackbody emissive power and the known and some new energy distribution
functions of particles; the integro-differential equation of energy transfer, which allows one to explain the existence of
the final velocity of propagation of energy carriers, the boundedness of the heat flux in the case of increase in the
temperature gradient to infinity, the influence of the scale factor on heat conduction, and, in the limit, the transforma-
tion to the Fourier equation of heat conduction.
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The theory of transfer processes is further developed in the recent radiation theory of heat-and-mass transfer
[12–14]. Within the framework of this theory, the energy distribution function of particles of a multicomponent con-
densed body has been obtained and the formula for the temperature dependence of the diffusion coefficient, which, in
the limiting cases, becomes the Arrhenius formula for a solid body and the Einstein formula for a liquid, has been
found.

Below we describe the mechanism and the fundamentals of the radiation theory of evaporation. The energy-
distribution functions of particles of a body and the intensities of their transition from one energy level to another in
the process of evaporation have been found. The expressions for the temperature dependences of the intensity of
evaporation of a condensed body and the saturated vapor pressure, which agree with the known experimental data and
the known Hertz–Knudsen formula, have been obtained.

The parameters characterizing the dynamics of the process of evaporation of condensed bodies are found from
the energy-distribution functions of atoms and from the intensity of their transition from one energy level to another
in this process. The indicated functions can be obtained using the law of spectral-radiation intensity of particles of the
body, which has been derived in [8] on the basis of the conservation laws, the phenomenological law of heat conduc-
tion, and some experimental data, starting from the fact that the energy transfer as well as the transfer of the mass of
a substance or of the field are performed by material carriers emitted and absorbed by the particles of the substance.
This law can be formulated as follows. The degrees of freedom of the particles of a unit volume of a body, found at
the ith energy level in frequency ν, emit energy qiν by quanta hν in a unit time. The value of this energy is propor-
tional to the energy level i, the energy of the quantum hν, and the density of the degrees of freedom of the particles
found at this level niν, i.e.,

qiν = ενniνihν , (1)

where εν is the emissivity of photons of frequency ν, εν ≠ f(i). It has been established that, on condition that (1) is
consistent with the laws of blackbody radiation and the Maxwell–Boltzmann law of energy distribution of particles of
a body, the degree of freedom of an atom, found at the ith energy level in frequency ν, emits i photons at the mo-
ment of emission and passes to the zero energy level.

Let us consider a closed equilibrium system consisting of a single-component condensed body and its vapor.
For the simplicity of presentation, we will assume that to every degree of freedom of a particle of the body corre-
sponds an arbitrary particle (a quasiparticle) emitting and absorbing photons of only the frequency ν. The quasiparti-
cles are distributed over the energy levels i = 1, 2, ..., I, where I is the limiting energy level for the frequency ν, at
which a quasiparticle can be found. The quantity I is related to the activation energy A by the relation {Ihν < A ≤
(I + 1)hν}. The particles found at the energy level I, after the absorption of the photon hν, give up their energy
(I + 1)hν to other particles of the body by way of emission. In this case, the particles that are positioned near the free
surface of the condensed body can break away from it, while the other particles, after some displacements, pass to the
zero level without leaving the body. On condition that the system is equilibrium, the total values of the number and
momentum of evaporated and condensed particles can be considered to be the same.

Let us assume that in a unit volume of a body there are niν quasiparticles with energy Eiν = ihν. Then, in ac-
cordance with the law of spectral-radiation intensity of particles, the energy emitted by these quasiparticles is
qiν = ενniνEiν, i = 1, 2, ..., I, and the change in their number at the level i in a unit time, caused by the emission, is

n
.
iν = qiν

 ⁄ (ihν) = ενniν ,   i = 1, 2, ... , I . (2)

where n
.
iν is the number of particles of the unit volume leaving the energy level i in a unit time because of the emis-

sion of photons hν.
If the density of the photons hν in the body is χν, the energy absorbed by niν quasiparticles in a unit time

[18] is qiν′  = niνσνcχνhν, where σν is the effective cross section of absorption of the photons hν by an atom; as fol-
lows from the energy-balance equation for a system of particles under equilibrium conditions, the ratio εν ⁄ σν is inde-
pendent of the type of atoms. Since every quasiparticle of the energy level i that absorbed the photon hν passes to the
(i + 1)th level, the number of particles that will pass from level i to level i + 1 in a unit time because of the absorption
of the energy qiν′  will be
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n
.
iν
′  = qiν

′  ⁄ hν = niνσνcχν ,   i = 0. 1, ... , I , (3)

where niν′  is the number of particles of the unit volume, which leave the energy level i in a unit time because of the
absorption of the photons hν. In the same time interval, n

.
i−1,ν′  = ni−1,νσνcχν particles will pass from level i − 1 to level i.

Under the equilibrium conditions of the system, the number of quasiparticles at the level i remains unchanged,
i.e.,

dniν
dt

 = n
.
i−1,ν
′  − n

.
iν
′  − n

.
iν = 0 ,   i = 1, 2, ... , I . (4)

Equation (4) can be solved, with account for relation (2) and (3), as

wiν = w0ν 



1 + 

εν
cσνχν





−Eiν
 ⁄ hν

 = w0νs
i
 ,  i = 0, 1, ... , I . (5)

Here wiν = niν ⁄ nν is the probability of existence of a quasiparticle oscillating with frequency ν at the ith energy level;

s = 



1 + 

εν

cσνχν





−1

 . (6)

For the equilibrium system, it follows from the condition of conservation of the number of quasiparticles nν
that

  ∑ 

i=0

I

 wiν = w0ν  ∑ 

i=0

I

 s
i
 = w0ν 

1 − s
I+1

1 − s
 = 1 (7)

and, consequently, w0 = (1 − s) ⁄ (1 − sI+1).
The mean energy of a quasiparticle oscillating with frequency ν is determined by the expression

eν =  ∑ 

i=0

I

 Eiνni 
 ⁄   ∑ 

i=0

I

 ni = hνw0ν  ∑ 

i=0

I

 is
i
 = hν 

s

(1 − s) (1 − s
I+1)

 [1 − s
I
 − Is

I
 (1 − s)] . (8)

Since s < 1, the mean energy of a quasiparticle increases as the value of I increases. When I → ∞, its mean
energy is

eν
∞

 = hν 
s

1 − s
 . (9)

When the system is equilibrium, the energy emitted by quasiparticles of the unit volume in a unit time,

Jimet =  ∑ 

i=0

I

 ενniihν + (I + 1) nIhνcσν χν , (10)

is equal to the energy Jabs which is absorbed by them in the same time interval:

Jabs =  ∑ 

i=0

I

 hνniνcσν χν = hνnνcσν χν . (11)
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From (10) and (11) we find, with account for (9), that

χν = 
εν

cσν
 

s

1 − s
 = 

εν

cσν
 
eν

∞

hν
 . (12)

The dependence of the quantities s, eν, and χν on the temperature T can be obtained in the following way.
We represent the function wiν in the form

wiν = 
1 − s

1 − s
I+1

 s
i
 = exp 





Ψ − Eiν

θ




 , (13)

where

θ = − 
hν

ln s
 = 

hν

ln 



1 + 

εν

cσν χν





 ;   Ψ = θ ln 




1 − s

1 − s
I+1




 . (14)

Substituting (13) into the equation of conservation of the number of particles, written in the form ∑ 

i=1

I

 wi = 1,

and then differentiating it with respect to θ, we arrive at the equation

  ∑ 

i=1

I

 
1

θ2 



θ 

∂Ψ

∂θ
 − (Ψ − Eiν)




 exp 

Ψ − Eiν

θ
 = 0 . (15)

Taking into account that the quantities θ and ψ are independent of i, we find from Eq. (15) that

θ 
∂Ψ
∂θ

 = Ψ − eν . (16)

This expression is a Gibbs–Helmholtz thermodynamic equation for the system in which the single oscillation frequency
ν is realized; the function Ψ is the free energy attributed to a single particle, and θ = bT, b ≠ b(T). Then it follows
from (12) that

χν = 
εν

cσν
 



exp 





hν
bT




 − 1





−1

 . (17)

The quantity χν determines the total number of photons hν in the unit volume, which move in different di-
rections and form Nν standing waves. The energy of one standing wave is Ustν = χνhν ⁄ Nν. According to classical
physics, in a blackbody, the number of standing waves in a unit volume with frequencies from ν to ν + dν is deter-
mined by the relation dg(ν) = 8πν2dν ⁄ c3; then the number of frequencies in this interval is 8πν2dν ⁄ (c3Nv). In this
case, the volume density of the energy of the blackbody-radiation field is

ρν = Ustν 
8πν2

c
3

 = 
8πhν3

c
3  

εβν

cσβνNν

 



exp 





hν

bT




 − 1





−1

 . (18)

Comparing the expression obtained to the Wien thermodynamic law and the Rayleigh–Jeans classical formula,
we find that b = k and εβν ⁄ (cσβνNν) = 1. In this case, formula (18) coincides with the Planck formula
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ρν = 
8πhν3

c
3  




exp 





hν

kT




 − 1





−1

 , (19)

and the expressions for the photon density χν and the function s take the form

χν = 
εν

cσν
 



exp 





hν
kT




 − 1





−1

 ,   s = exp 



− 

hν
kT




 . (20)

It is easily seen that in the case of an infinite upper limit of the spectrum of energy states of a quasiparticle

(when I → ∞), the function wiν transforms to the Maxwell–Boltzmann distribution wiν = 



1 − exp 




− 

hν
kT








 exp 




− 

Eiν
kT




,

while eν transforms to the expression for the mean energy of a quantum oscillator eν = eν
∞ = hν 




exp 





hν
kT




 − 1





−1

; just

as χν, the value of eν
∞ is independent of the chemical composition of the body. For the case where I = 1, it follows

from (13) that w0ν = 1 ⁄ (1 + s) and w1ν = s ⁄ (1 + s). In this case, the probability of existence of a quasiparticle in the

state, which corresponds to the energy of hν, is w1ν = 1  ⁄ 


exp 





hν
kT




 + 1




, i.e., for this case, distribution (13) coincides

with the Fermi–Dirac distribution.
The probable number of particles of the unit volume of a condensed body, oscillating with a frequency ν,

which reach the activation energy per unit time, is

GAν = wIcσν χνnν = ενnν 
s
I+1

1 − s
I+1

 = ενnν 

exp 



A

kT




 − 1




−1

 . (21)

Summing (21)  over all the electromagnetic wave frequencies realized in the condensed body, we find the
probable number of particles of the unit volume which reach the activation energy in a unit time:

GA = εn 

exp 



A
kT




 − 1




−1

 , (22)

where ε is the value of εν averaged over the oscillation frequencies of the particles; n = ∑ 

ν

 nν.

Not all the particles that received the energy (I + 1)hν break away from the body. This is explained by the
fact that on the way to the free surface a particle, overcoming the resistance of the surrounding particles, loses energy
El that is proportional to the length of the path traversed by the particle after reaching the activation energy and to the
particle density n, i.e., El = ξnl, where ξ = const. A particle can break away from the body on condition that
El ≤ (I + 1)hν. Hence it follows that the maximum distance of the particle from the free surface, at which the particle
can leave the body, is

δ∗
 = 

(I + 1) hν
ξn

 C 
A
ξn

 .
(23)

The quantity δ∗  can be considered as the thickness of the boundary layer adjacent to the free surface of a fairly mas-
sive condensed body in which the evaporation process occurs.

Let us find the flux of particles that evaporate from a condensed-body layer of thickness δ reckoned from the
free surface along its inner normal η. To do this, we consider the elementary layer dη which is at a distance η from
the free surface (η = 0). The number of particles contained in the elementary layer is dn = ndη. In accordance with
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(22), the probable number of particles of the elementary layer of unit area which reach the activation energy per unit
time is

dGA = GAdη . (24)

Each of these particles has a chance to break away from the body. The probability of their evaporation is determined
in the following way. A spherical surface of radius δ∗  with a center coincident with the center of the particle is con-
structed. This surface is positioned in the elementary layer considered, and it reached the activation energy. This par-
ticle can break away from the body only at those points of its free surface which are positioned inside the indicated
sphere. If, as a result of the transformation of activation energy, this particle obtains a momentum whose direction is
equiprobable, the probability of its evaporation we is equal to the ratio between the solid angles ωf.s and ωsph which
are bound by a part of the free surface positioned inside the sphere and by the entire sphere. For the case of a plane
free surface, the solid angle ωf.s is determined as the ratio of the area of the spherical segment cut off by the free
surface η = 0 from the sphere to the square of its radius, i.e.,

ωf.s = 2π 



1 − 

η

δ∗



 ,   ωsph = 4π ,   we = 

1

2
 



1 − 

η

δ∗



 .

In this case, the probable number of particles evaporated from the elementary layer of unit surface in a unit time is

dGe = 
1

2
 



1 − 

η

δ∗



 GAdη . (25)

The specific flow rate of particles evaporated from the free surface Ge is determined by integrating (25) over the
thickness of the layer considered, 0 < η < δ, if δ < δ∗  or over the thickness of the sublevel 0 < η < δ∗  if δ > δ∗ . With
account for (21) and (23), the formula for the specific intensity of evaporation of a condensed body can be written in
the following form:

Ge = 
δ
_

2
 



1 − 

δ
_

2



 
εA

ξ
 

exp 



A
kT




 − 1




−1

 ,   0 < δ
_
 ≤ 1 , (26)

where δ
_
 = δ ⁄ δ∗ . It follows from formula (26) that the intensity of evaporation of a condensed body depends on only

one state parameter, i.e., the temperature of the body. For a massive body whose geometric characteristics are much
larger than δ∗ , formula (26) takes the form

Ge = 
εA

4ξ
 

exp 



A
kT




 − 1




−1

 . (27)

If the thickness of the boundary layer δ∗  is a relatively small quantity, the intensity of evaporation can arbitrarily be
considered as a function of the temperature of the outer boundary of the condensed body.

The flow of vapor molecules Gc from the gas phase, incident on the interface of unit area between the con-
densed and gas phases and condensed on it, is determined by the expression

Gc = 
1
2

 fnvV
__

η . (28)

Here f is the condensation coefficient [1], which represents the ratio of the number of molecules caught by the surface
of the liquid to the total number of vapor molecules incident on the surface of the condensate and nv is the density
of vapor molecules in the gas phase, which, for an ideal gas, is related to the partial pressure of the vapor Pv and its
temperature Tv by the relation following from the Mendeleev–Clapeyron relation
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nv = 
Pv

kTv
 ; (29)

V
__

η is the component of the mean thermal velocity of molecules normal to the surface of the condensed body which,
for the case of the Maxwell distribution of them by velocities, is determined by the expression

V
__

η = √2kTv

πm
 . (30)

The factor 1/2 in (28) is due to the fact that of nv molecules only half approach the phase interface and can condense.
Substituting expressions (29) and (30) into (28), we obtain

Gc = 
f

√2πkm
 

Pv

√Tv

 . (31)

When the system condensed body–gas phase is under heat-equilibrium conditions, the phase temperatures and the mass
flows of the evaporated and condensed molecules are equal, i.e., Tv = T and Ge = Gc, and the vapor pressure Pv is
equal to the saturated vapor pressure Ps. Under these conditions, from formulas (27) and (31) we find the functional
dependence of the saturated vapor pressure on the temperature:

Ps = N √T  

exp 



A

kT




 − 1




−1

 ,   N = 
δ
_

2
 



1 − 

δ
_

2



 
εA √2πkm

fξ
 . (32)

The dependence between the temperature of the liquid T and the pressure of the saturated vapor Ps which is
in thermodynamic equilibrium with the massive liquid layer has been found experimentally for a number of liquids,
and it is presented in the literature [15] in the form of tables of a saturated vapor and a liquid on the saturation line.
Because of this, one can compare the found dependence (32) to experimental data, for example, for water and ammo-
nia. Broadly speaking, the quantities A, f, and ξ can undergo certain changes in the temperature range in which the
liquid can exist. However, in separate regions of this range, the quantities A and N can be considered to be constant.
The values of A and N can be found by way of solution of the system of two equations obtained as a result of rep-
resentation of Eq. (32) for two points on the saturation line, which correspond, respectively, to the values of T1, Ps1
and T2, Ps2 in the table of a saturated vapor and water. The calculations have shown that the use of only two points
on the saturation line for determining the dependence of Ps on T throughout the entire temperature range of existence
of water (from 273 to 647 K) produces an error in the pressure Ps calculated from (32) as compared to its tabulated
value (at the same temperature). The maximum value of this error was approximately Πmax = 11.9%, while the mean
error was Πm = 7.3%. The subdivision of the interval of existence of water into two regions 273 < T < 373 K and
373 < T < 647 K made it possible to obtain the errors Πmax = 3.4% and Πm = 2.1% at A′ = 0.4206⋅108 J/(kmole) and
N = 0.4361⋅1010 kg ⁄ (m⋅sec2⋅K0.5) for  the first region and Πmax = 2.6% and Πm = 1.2% at  A′ = 0.3689⋅108 and
N = 0.8514⋅109 for the second region. These errors are close to the errors in the tabulated data. Here A′ = ANA; NA is
the Avogadro number. The calculations of the dependence Ps = F(T) for ammonia have shown that the subdivision of
the temperature interval 203 < T < 323, for which the tabulated data on the parameters of the saturated vapor on the
saturation line are available in the literature [15], into two regions 203 < T < 243 K and 243 < T < 323 K makes it pos-
sible to obtain the errors Πmax = 1.28% and Πm = 0.56% at A′ = 0.2367⋅108 J/kmole and N = 0.9821⋅1010

kg ⁄ (m⋅sec2⋅K0.5) for the first region and Πmax = 1.31% and Πm = 0.76% at A′ = 0.2194⋅108 and N = 0.4187⋅109 for the
second region. As is seen from the figure, the calculated dependence is in good agreement with the tabulated data in
this case, which indicates that the dependence of the state parameters on the saturation line can be described based on
Eq. (32).

Starting from expressions (26) and (31), it can be shown that in the case of the equilibrium system threshold
mixture–nonevaporated condensed body, on the latter there arises a liquid layer whose thickness is δ = δ∗ (1 − √1 − ψ).
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Let us consider the nonequilibrium process of interaction of a condensed body with a vapor-gas mixture,
which is realized, for example, in the case of flow of a gas around the body. We mentally separate a Knudsen layer
near the surface of the condensed body in the gas phase, i.e., a layer having a thickness equal to the mean free path
of the vapor molecules in order of magnitude. We denote the gas temperature and the partial pressure of the vapor at
the outer boundary of the Knudsen layer as Tg and Pv. In this case, the specific flow rate of the molecules evaporated
from the free surface of the condensed body is determined by formula (26). The flow of condensing vapor molecules
passing through the outer boundary of the Knudsen layer has been found, in accordance with (29) and the condition
of equality of the evaporation and condensation flows in the case of the equilibrium system, from the formula

 Gc = 
f

√2πkm
 
Psψ

√Tg

 = 
δ
_

2
 



1 − 

δ
_

2




 
εAψ

ξ
 



exp 





A

kTg




 − 1





−1

 , (33)

where ψ is the degree of saturation of the vapor-gas mixture at a given temperature, ψ = Pv
 ⁄ Ps(Tg).

The resulting specific flow of vapor molecules from the condensed body

G = Ge − Gc = 
δ
_

2
 



1 − 

δ
_

2




 
εA

ξ
 













exp 





A

kT




 − 1





−1

 − ψ 



exp 





A

kTg




 − 1





−1








 . (34)

For the case of the single-component condensation of a saturated vapor on a massive condensed body where
ψ = 0 and Ge = Gc, it follows from (34) that the resulting mass flow of the condensate Gm = Gm is determined by the
expression

Gm = f √ m

2πk
 




Ps (Tg)

√Tg

 − 
Ps (T)

√T




 , (35)

which represents the known Hertz–Knudsen formula [1].
The specific heat flux Q = −λ∂T ⁄ ∂η η=0 which is delivered to the boundary surface of the condensed body

due to the processes of evaporation, condensation, and convective heat exchange can be found on the basis of the en-
ergy conservation law:

Fig. 1. Comparison of the dependences of the pressure Ps of the saturated
vapor on the temperature T for water (curves 1) and ammonia (curve 2) calcu-
lated from Eq. (32) to the tabulated data (points). Ps, MPa; T, K.
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Q = 
δ
_

2
 



1 − 

δ
_

2




 
εAm

ξ
 

r (T) 


exp 



A

kT




 − 1




−1

 − ψr (Tg) 

exp 



A

kTg




 − 1




−1



 − α (Tg − T) , (36)

where r is the heat of the phase transition of the condensed body to the vapor (r = r(T)) and α is the coefficient of
convective heat exchange. Equation (36) can be used as the condition of heat exchange between the evaporating body
and the environment.

NOTATION

A, activation energy; c, velocity of light; e, mean energy per degree of freedom of an atom; Eiν, energy per
degree of freedom of an atom found at the ith energy level in frequency ν; GA, probable number of particles in a unit
volume, which reach the activation energy in a unit time; Ge, specific intensity of evaporation of particles from the
free surface of the condensed body; Gc, specific flow of vapor molecules from the gas phase, which are condensed
from the free surface of the body; Gm, resulting mass flow of the condensate; h, Planck constant; k, Boltzmann con-
stant; m, mass of vapor molecules; n, density of particles (quasiparticles); Nν, number of standing waves of frequency
ν in a unit volume of the body; P, pressure; Pv, partial pressure of the vapor; q, spectral-radiation power of the de-
grees of freedom of particles in a unit volume of the body; Q, specific heat flux; t, time; T, temperature; V, velocity
of travel of vapor particles in the environment; δ

_
, relative thickness of the condensed-body layer; δ∗ , thickness of the

near-boundary layer in which the evaporation process occurs; ε, emissivity; η, normal to the free surface of the body;
λ, thermal-conductivity coefficient; σ, effective cross section of the absorption of photons by a particle of the body; χ,
photon density; ξ, coefficient of resistance to the movement of a particle. Subscripts: e, evaporation; c, condensation;
s, saturated vapor; v, vapor; i, serial number of energy level; ν, frequency of oscillations of the degree of freedom of
an atom; emit, emission; abs, absorption; st, standing; f.s, free surface; m, mean; g, gas.
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